304

COMPONENT MEASUREMENT

LF Impedance Analyzer (5 Hz to 13 MHz) HP 4192A

- 5 Hz to 13 MHz variable measuring frequency
- Gain-phase measurement: amplitude, phase, group delay
- · Floating or grounded devices

- Test Equipmet Depot 99 Washington Street Melrose, MA 02176-6024 TEL: 800.517.8431 FAX: 781.665.0780
- Impedance measurement: |Z| |Y| ⊕ R X G •
 B L C D Q ∆ ∆%
- Standard HP-IB

HP 4192A (shown with Opt. 907 handles)

Description

The HP 4192A LF Impedance Analyzer performs both network analysis and impedance analysis on devices such as telecommunication filters, audio/video electronic circuits, and basic electronic components. Both floating and grounded devices can be tested.

Automatic Swept Frequency Measurement of All Impedance Parameters

The $\dot{H}P$ 4192A can measure 11 impedance parameters (|Z|, |Y|, Θ , R, X, G, B, L, C, D, Q) over a wide range |Z|: 0.1 m Ω to 1 M Ω ; |Y|: 1 nS to 10 S).

The built-in frequency synthesizer can be set from 5 Hz to 13 MHz with a maximum resolution of 1 mHz. This feature allows accurate characterization of high Q devices such as crystals. Test signal level is variable from 5 mV to 1.1 V with 1 mV resolution. Also, an internal dc bias voltage source provides ±35 V at 10 mV increments. Thus, the HP 4192A can evaluate components and entire circuits near actual operating conditions.

Specifications (complete specifications on data sheet) **Measuring signal** $(23 \pm 5^{\circ}C)$

Frequency range: 5 Hz to 13 MHz

Frequency step: 0.001~Hz (5 Hz to 10~kHz), 0.01~Hz (10~kHz to 100~kHz), 0.1~Hz (100~kHz to 1~MHz), 1~Hz (1~MHz to 13~MHz). Frequency accuracy: $\pm 50~ppm$

OSC level: 5 mV to 1.1 Vrms variable into 50 Ω (amplitude-phase measurement) or open circuit (impedance measurement).

OSC level step: 1 mV (5 mV to 100 mV), 5 mV (100 mV to 1.1 V). OSC level accuracy: 5 Hz to 1 MHz: \pm ((5 + 10/f)% of setting + 2 mV) where f is in Hz. 1 MHz to 13 MHz: \pm ((4 + 1.5 × F)% of setting + 2 mV) where F is in MHz.

Level monitor (impedance measurement): current through or voltage across sample can be monitored

Control: spot and sweep via front panel or HP-IB

Measuring Mode

Spot measurement: at specific frequency (or dc bias)

Swept measurement: manual or automatic sweep from START to STOP frequency (or dc bias) at selected STEP frequency (or dc bias) rate

Sweep mode: linear or logarithmic (frequency only)

Recorder outputs: output dc voltage proportional to each measured value, and frequency or dc bias.

Maximum output voltage: ±1 V

Output voltage accuracy: $\pm (0.5\% \text{ of voltage } +20 \text{ mV})$

Key status memory: 5 sets of measuring conditions can be stored and recalled at any time.

HP-IB data output and remote control: standard

Self-test: automatic introspective testing

Trigger: internal, external, manual or HP-IB

Amplitude—Phase Measurement

Parameter measured: relative amplitude B-A (dB) and phase Θ (degrees or radians), B-A and group delay, absolute amplitude A (dBm or dBV) or B (dBm or dBV), and deviation (Δ , Δ %) of all parameters **Reference amplitude:** 0 dBV = 1 Vrms, 0 dBm = 1 mW (with 50 Ω termination)

OSC output resistance: $50~\Omega$

Channels A and B: input impedance: 1 $M\Omega$ ±2%, shunt capacitance: 25 pF ±5 pF

Display Range and Resolution

B-A: 0 to ± 100 dB, 0.001 dB (0 to ± 20 dB), 0.01 dB (± 20 to ± 100 dB)

 Θ : 0 to $\pm 180^{\circ}$, 0.01°

Group delay: 0.1 ns to 19 s, max. resolution 41/2 digits

A or B: +0.8 to -100 dBV, 0.001 dB (>-20 dB), 0.01 dB (≤ -20 dB), +13.8 to -87 dBm, 0.001 dB (>-20 dBm), 0.01 dB (≤ -20 dBm)

Measuring accuracy (23 ±5°C): specified at BNC unknown terminals after 30 minute warmup (test speed: normal or average)

B-A (relative amplitude) and ⊕ (phase) Measurement

Determined by sum of channel A and B accuracies given below (accuracy of each channel changes according to absolute input level)

FIGURE 1 GAIN MEASUREMENT ACCURACY

FIGURE 2: PHASE ACCURACY WHEN MAKING BAIN MEASUREMENTS

Impedance Measurement

Parameter measured: $|Z| - \Theta$, $|Y| - \Theta$, R - X, G - B, $L - D \cdot Q \cdot R \cdot G$, $C - D \cdot Q \cdot R \cdot G$ and deviation $(\Delta, \Delta\%)$ of all parameters

Display: 4½ digits, max. display 12999 counts, 19999 for L & C. Circuit mode: series equivalent circuit (______) and parallel equivalent circuit (______). Automatic selection available.

Auto ZERO adjustment: automatic normalization of the readout off-

Auto ZERO adjustment: automatic normalization of the readout offset due to residuals of the test fixture by pushbutton operation (at spot frequency)

Measuring range and accuracy (23 \pm 5°C): specified at BNC unknown terminals after 30 minute warmup when OSC level is more than 0.1 V and when auto ZERO adjust is performed (test speed: normal or average). Accuracy given below is only valid when the measured value is equal to full scale of each range.

 $|\mathbf{Z}| - \Theta$, $\mathbf{R} - \mathbf{X}$ measurement: range: $|\mathbf{Z}|$, \mathbf{R} , \mathbf{X} : $0.1 \text{ m}\Omega$ to $1.2999 \text{ M}\Omega$; Θ : -180.00° to $+180.00^{\circ}$. Accuracy: \mathbf{R} accuracy ($\mathbf{D} \ge 10$); \mathbf{X} accuracy ($\mathbf{D} < 1$)

FIGURE 3: IZI, R. X ACCURACY

|Y| $-\Theta$, G - B measurement: range: |Y|, G, B: 1 nS to 12.999 S; Θ : -180.00° to +180.00°. Accuracy: G accuracy (D > 1); B accuracy (D \leq 0.1).

FIGURE 5: IYI. G. B ACCURACY

FIGURE 6: PHASE ACCURACY WHEN MEASURING IY

L – D • Q, C – D • Q measurement: (automatically calculated from measured Z/Y values)

Parameter	Measuring Range*	Basic Accuracy
L	0.01 nH to 1000 H	0.27%
С	0.1fF to 199** mF	0.15%
D(1/Q)	0.0001 to 19.999	0.001 (C-measurement) 0.003 (L-measurement)

^{*}Varies with measuring frequency except for D(1/Q)

Internal dc bias: standard (impedance measurement only)

Voltage range: -35 V to +35 V, 10 mV step

Setting accuracy (23 ±5°C): 0.5% of setting +5 mV

Bias control: spot and swept, using front panel controls or HP-IB

Genera

Measuring Time (high speed mode)

B-A and Θ, A or B: 88 to 127 ms (≥ 400 Hz) Impedance parameters: 58 to 91 ms (≥ 1 kHz) Test Level Monitor Range (impedance measurement)

Voltage: 5 mV to 1.1 V Current: 1 μ A to 11 mA

Operating temperature: 0 to 55°C, ≤ 95% RH at 40°C

Power: 100, 120, 220 V \pm 10%, 240 V + 5% to -10%, 48 to 66 Hz, 150 VA max.

Size: 425.5 mm W x 235 mm H x 615 mm D (16.75" x 9 " x 22.6").

Weight: approx. 19 kg (41.9 lb)

Furnished accessories and parts: HP 16047A test fixture, HP 11048C 50 Ω feed thru terminations (2 ea.), power splitter, HP 11170A BNC cables (2 ea.), BNC adapter

Ordering Information

HP 4192A LF Impedance Analyzer

Accessories

HP 16095A Probe Fixture

HP 16096A 2-port Component Test Fixture

HP 16097A Accessory Kit

HP 16047C Test Fixture

HP 16048A Test Leads (BNC connector)

HP 16048C Test Leads with alligator clip

^{**}Accuracy of C ranges over 100 mF is not specified.